Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 95: 105754, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061604

RESUMO

In this study, we aimed to analyze the effects of first and second-generation Bcr-Abl tyrosine kinase inhibitors, imatinib and nilotinib on LPS/IFN gamma activated RAW 264.7 macrophages. Our data revealed that imatinib was less effective on nitrite levels and more toxic on macrophages compared to nilotinib. Therefore, we further analysed the effect of nilotinib on various inflammatory markers including iNOS, COX-2, NFkB, IL-6, p-ERK, p-p38 and p-JNK in LPS/IFN gamma activated RAW264.7 macrophages. Spectrophotometric viability test and Griess assay,western blot, RT-PCR and luciferase reporter assays were used to analyze the biological activity of nilotinib. Our findings revealed that nilotinib decreases nitrite levels, iNOS mRNA, iNOS and p-p38 protein expressions significantly whereas induces IL-6 mRNA and p-JNK protein expressions at particular doses. We did not find significant effect of nilotinib on COX-2, p-ERK and nuclear p65 proteins and NFkB transcriptional activity. In addition, the binding mode of nilotinib to iNOS protein was predicted by molecular docking. According to the docking analyses, nilotinib exhibited hydrophobic interactions between MET349, ALA191, VAL346, PHE363, TYR367, MET368, CYS194, TRP366 residues at the binding pocket and the molecule as well as van der Waals interactions at specific residues. In conclusion, our results reveal that, in addition to its anticancer activity, nilotinib can exhibit immune modulatory effects on macrophages through its effects on iNOS, IL-6, p-p38 and p-JNK.


Assuntos
Lipopolissacarídeos , Nitritos , Mesilato de Imatinib/farmacologia , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Nitritos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Macrófagos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Pirimidinas/toxicidade , RNA Mensageiro/metabolismo
2.
Med Oncol ; 41(1): 6, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044345

RESUMO

The cause of hematological cancers is the uncontrolled proliferation of hematopoietic and lymphoid tissues, and chemotherapy is used to treat cancer. However, adverse side effects of chemotherapy are common. Therefore, the use of plant extracts as a method for treating cancer is becoming increasingly popular. Anoectochilus roxburghii (wall.) Lindl. (A. roxburghii) is one of the original sources of the valuable medicinal plants known as the king medicine and the golden grass. This study investigated the potential anticancer effect of A. roxburghi (AR) on JURKAT, MM1S, THP1 and U266 cells. To test the cytotoxic and apoptotic effects of AR, hematological cancer cells were exposed to increasing doses of AR (0.1-0.5 µg/µl). The spectrophotometric MTT assay and the flow cytometric Annexin V staining were used to examine the viability and apoptosis of the cells, respectively. qRT-PCR was used to determine the expression levels of the apoptosis-related genes BAD, BAX, BIM and BCL-2. Our results show that AR treatment decreased cell viability and induced apoptosis in each cell line. Our RT-PCR data showed that AR significantly increased the expression levels of the pro-apoptotic BAX gene in JURKAT and MM1S cells, whereas it significantly increased the expression levels of both BAX and BIM in U266 cells. This is the first study to investigate how AR modulates apoptosis in hematological cancer cells. As a result, AR therapy may be a promising treatment modality for the treatment of cancer.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Neoplasias , Humanos , Proteína X Associada a bcl-2 , Antineoplásicos/farmacologia , Apoptose , Neoplasias Hematológicas/tratamento farmacológico , Linhagem Celular Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-38117080

RESUMO

Imatinib (IMA) and nilotinib are the first and second generations of BCR-ABL tyrosine kinase inhibitors, which widely applied in chronic myeloid leukemia (CML) treatment. Here we aimed to provide new targets for CML treatment by transcriptome analysis. Microarray data GSE19567 was downloaded and analyzed from Gene Expression Omnibus (GEO) to identify common genes, which are downregulated or upregulated in K562-imatinib and K562-nilotinib treated cells. The differentially expressed genes (DEGs) were assessed, and STRING and Cytoscape were used to create the protein-protein interaction (PPI) network. In imatinib and nilotinib treated groups' comparison, there were common 626 upregulated and 268 downregulated genes, which were differentially expressed. The GO analysis represented the enrichment of DEGs in iron ion binding, protein tyrosine kinase activity, transcription factor activity, ATP binding, sequence-specific DNA binding, cytokine activity, the mitochondrion, sequence-specific DNA binding, plasma membrane and cell-cell adherens junction. KEGG pathway analysis revealed that downregulated DEGs were associated with pathways including microRNAs in cancer and PI3K-Akt signaling pathway. Furthermore, upregulated DEGs were involved in hematopoietic cell lineage, lysosome and chemical carcinogenesis. Among the upregulated genes, MYH9, MYH14, MYL10, MYL7, MYL5, RXRA, CYP1A1, FECH, AKR1C3, ALAD, CAT, CITED2, CPT1A, CYP3A5, CYP3A7, FABP1, HBD, HMBS and PPOX genes were found as hub genes. Moreover, 20 downregulated genes, YARS, AARS, SARS, GARS, CARS, IARS, RRP79, CEBPB, RRP12, UTP14A, PNO1, CCND1, DDX10, MYC, WDR43, CEBPG, DDIT3, VEGFA, PIM1 and TRIB3 were identified as hub genes. These genes have the potential to become target genes for diagnosis and therapy of CML patients.

4.
Chem Biol Drug Des ; 102(6): 1521-1533, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37722976

RESUMO

Imatinib (IMA) is a tyrosine kinase inhibitor (TKI) introduced for the chronic myeloid leukemia (CML) therapy. Emergence of IMA resistance leads to the relapse and failure in CML therapy. Benzimidazole is a heterocyclic organic compound which is widely investigated for the development of anticancer drugs. In this study, we aimed to explore the anticancer effects of some 2-[4-(1H-benzimidazol-1-yl) phenyl]-1H-benzimidazole derivatives on K562S (IMA-sensitive) and K562R (IMA-resistant) cells. To analyze the cytotoxic and apoptotic effects of the compounds, K562S, K562R, and L929 cells were exposed to increasing concentrations of the derivatives. Cytotoxic effects of compounds on cell viability were analyzed with MTT assay. Apoptosis induction, caspase3/7 activity were investigated with flow cytometry and BAX, BIM, and BAD genes expression levels were analyzed with qRT-PCR. Rhodamine123 (Rho-123) staining assays were carried out to evaluate the effect of compounds on P-glycoprotein (P-gp) activity. The hit compounds were screened using molecular docking, and the binding preference of each compounds to BCR-ABL protein was evaluated. Our results indicated that compounds triggered cytotoxicity, caspase3/7 activation in K562S and K562R cells. Rho-123 staining showed that compounds inhibited P-gp activity in K562R cells. Overall, our results reveal some benzimidazole derivatives as potential anticancer agents to overcome IMA resistance in CML.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Humanos , Mesilato de Imatinib/farmacologia , Simulação de Acoplamento Molecular , Células K562 , Antineoplásicos/farmacologia , Apoptose , Proteínas de Fusão bcr-abl/genética , Inibidores de Proteínas Quinases/farmacologia , Benzimidazóis/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP
5.
Cell Mol Biol (Noisy-le-grand) ; 69(8): 57-67, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37715413

RESUMO

Parkin is a member of the mitochondrial quality control system that plays a major role in mitophagy. Although the loss of function mutations in the Parkin gene has been associated with the Familial Parkinson's phenotype, research in recent years points out that Parkin's function is not limited to neurodegenerative diseases. Parkin's function impressing key cellular quality control mechanisms, including the ubiquitin-proteasome and autophagy-lysosome systems, makes it an important player in the maintenance of cellular homeostasis. In this study, we investigated whether Parkin affects cell viability and ER stress responses under lipotoxic conditions in INS-1E cells. Our results may suggest that silencing Parkin may affect autophagy in addition to apoptosis.  We also showed that Parkin may have a protective effect against lipo-toxic effects in INS-1E cells. Consistent with previous studies, we observed that stress responses were different for high and low palmitic acid doses. The Parkin being inhibited under high-dose PA treatment and active under low-dose PA treatment indicate that regulation of stress responses is controlled by environmental conditions. Our preliminary findings may suggest that in low lipotoxic conditions, Parkin affects the ER stress response by modulating Chop activity and Ca2+ release from the ER to the cytoplasm.


Assuntos
Células Secretoras de Insulina , Animais , Ratos , Apoptose , Autofagia , Sobrevivência Celular , Ubiquitina-Proteína Ligases/genética
6.
Adv Med Sci ; 68(2): 238-248, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421850

RESUMO

PURPOSE: Chronic myeloid leukemia (CML) is a hematological malignancy characterized by the presence of BCR-ABL protein. Imatinib (IMA) is considered as the first line therapy in management of CML which particularly targets the BCR-ABL tyrosine kinase protein. However, emergence of resistance to IMA hinders its clinical efficiency. Hence, identifying novel targets for therapeutic approaches in CML treatment is of great importance. Here, we characterize a new subpopulation of highly adherent IMA-resistant CML cells that express stemness and adhesion markers compared to naive counterparts. MATERIALS AND METHODS: We performed several experimental assays including FISH, flow cytometry, and gene expression assays. Additionally, bioinformatics analysis was performed by normalized web-available microarray data (GSE120932) to revalidate and introduce probable biomarkers. Protein-protein interactions (PPI) network was analyzed by the STRING database employing Cytoscape v3.8.2. RESULTS: Our findings demonstrated that constant exposure to 5 â€‹µM IMA led to development of the adherent phenotype (K562R-adh). FISH and BCR-ABL expression analysis indicated that K562R-adh cells were derived from the original cells (K562R). In order to determine the role of various genes involved in epithelial-mesenchymal transition (EMT) and stem cell characterization, up/down-regulation of various genes including cancer stem cell (CSC), adhesion and cell surface markers and integrins were observed which was similar to the findings of the GSE120932 dataset. CONCLUSION: Treating CML patients with tyrosine kinase inhibitors (TKIs) as well as targeting adhesion molecules deemed to be effective approaches in prevention of IMA resistance emergence which in turn may provide promising effects in the clinical management of CML patients.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Células K562 , Apoptose , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Fusão bcr-abl/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Fenótipo
7.
Cancer Res Commun ; 3(6): 1041-1056, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377608

RESUMO

Glioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ. Significance: Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Mesenquimais , Humanos , Glioblastoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Temozolomida/farmacologia , Mitocôndrias , Células-Tronco Neoplásicas
8.
Chem Biol Drug Des ; 102(2): 262-270, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37094820

RESUMO

Raltegravir, the first integrase inhibitor approved for the treatment of HIV infection, has been implicated as a promising potential in cancer treatment. Therefore, the present study aimed to investigate the repurposing of raltegravir as an anticancer agent and its mechanism of action in multiple myeloma (MM). Human MM cell lines (RPMI-8226, NCI H929, and U266) and normal peripheral blood mononuclear cells (PBMCs) were cultured with different concentrations of raltegravir for 48 and 72 h. Cell viability and apoptosis were then measured by MTT and Annexin V/PI assays, respectively. Protein levels of cleaved PARP, Bcl-2, Beclin-1, and phosphorylation of histone H2AX were detected by Western blotting. In addition, the mRNA levels of V(D)J recombination and DNA repair genes were analyzed using qPCR. Raltegravir treatment for 72 h significantly decreased cell viability, increased apoptosis, and DNA damage in MM cells while having minimum toxicity on cell viability of normal PBMCs approximately from 200 nM (0.2 µM; p < .01 for U66 and p < .0001 for NCI H929 and RPMI 8226 cells). Furthermore, raltegravir treatment altered the mRNA levels of V(D)J recombination and DNA repair genes. We report for the first time that treatment with raltegravir is associated with decreased cell viability, apoptosis induction, DNA damage accumulation, and alteration of mRNA expression of genes involved in V(D)J recombination and DNA repair in MM cell lines, all of which show its potential for anti-myeloma effects. Hence, raltegravir may significantly impact the treatment of MM, and further studies are required to confirm its efficacy and mechanism of action in more detail in patient-derived myeloma cells and in-vivo models.


Assuntos
Infecções por HIV , HIV-1 , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Raltegravir Potássico/farmacologia , Linhagem Celular Tumoral , Leucócitos Mononucleares , Apoptose , RNA Mensageiro/genética , Inibidores de Integrase/farmacologia , Dano ao DNA , Proliferação de Células
9.
J Clin Med ; 12(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36769720

RESUMO

Different cell culture conditions and techniques have been used to mature spermatogenic cells to increase the success of in vitro fertilization. Sertoli cells (SCs) are essential in maintaining spermatogenesis and FSH stimulation exerts its effect through direct or indirect actions on SCs. The effectiveness of FSH and testosterone added to the co-culture has been demonstrated in other studies to provide microenvironment conditions of the testicular niche and to contribute to the maturation and meiotic progression of spermatogonial stem cells (SSCs). In the present study, we investigated whether co-culture of healthy SCs with the patient's testicular tissue in the medium supplemented with FSH/testosterone provides an advantage in the differentiation and maturation of germ cells in NOA cases (N = 34). In men with obstructive azoospermia (N = 12), healthy SCs from testicular biopsies were identified and purified, then cryopreserved. The characterization of healthy SCs was done by flow cytometry (FC) and immunohistochemistry using antibodies specific for GATA4 and vimentin. FITC-conjugated annexin V/PI staining and the MTT assay were performed to compare the viability and proliferation of SCs before and after freezing. In annexin V staining, no difference was found in percentages of live and apoptotic SCs, and MTT showed that cryopreservation did not inhibit SC proliferation compared to the pre-freezing state. Then, tissue samples from NOA patients were processed in two separate environments containing FSH/testosterone and FSH/testosterone plus co-culture with thawed healthy SCs for 7 days. FC was used to measure 7th-day levels of specific markers expressed in spermatogonia (VASA), meiotic cells (CREM), and post-meiotic cells (protamine-2 and acrosin). VASA and acrosin basal levels were found to be lower in infertile patients compared to the OA group (8.2% vs. 30.6% and 12.8% vs. 30.5%, respectively; p < 0.05). Compared to pre-treatment measurements, on the 7th day in the FSH/testosterone environment, CREM levels increased by 58.8% and acrosin levels increased by 195.5% (p < 0.05). Similarly, in medium co-culture with healthy SCs, by day 7, CREM and acrosin levels increased to 92.2% and 204.8%, respectively (p < 0.05). Although VASA and protamine levels increased in both groups, they did not reach a significant level. No significant difference was found between the day 7 increase rates of CREM, VASA, acrosin and protamine-2 in either FSH/testosterone-containing medium or in medium additionally co-cultured with healthy SCs (58.8% vs. 92.2%, 120.6% vs. 79.4%, 195.5% vs. 204.8%, and 232.3% vs. 198.4%, respectively; p > 0.05). Our results suggest that the presence of the patient's own SCs for maturation of germ cells in the culture medium supplemented with FSH and testosterone is sufficient, and co-culture with healthy SCs does not have an additional advantage. In addition, the freezing-thawing process would not impair the viability and proliferation of SCs.

10.
Mediterr J Hematol Infect Dis ; 15(1): e2023008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660357

RESUMO

Chronic myeloid leukemia (CML) is a malignant hematopoietic stem cell disease resulting in the fusion of BCR and ABL genes and characterized by the presence of the reciprocal translocation t(9;22)(q34;q11). BCR-ABL, a product of the BCR-ABL fusion gene, is a structurally active tyrosine kinase and plays an important role in CML disease pathogenesis. Imatinib mesylate (IMA) is a strong and selective BCR-ABL tyrosine kinase inhibitor. Although IMA therapy is an effective treatment, patients may develop resistance to IMA therapy over time. This study investigated the possible genetic resistance mechanisms in patients developing resistance to IMA. We did DNA sequencing in order to detect BCR-ABL mutations, which are responsible for IMA resistance. Moreover, we analyzed the mRNA expression levels of genes responsible for apoptosis, such as BCL-2, P53, and other genes (SCD-1, PTEN). In a group of CML patients resistant to IMA, when compared with IMA-sensitive CML patients, a decrease in SCD-1 gene expression levels and an increase in BCL-2 gene expression levels was observed. In this case, the SCD-1 gene was thought to act as a tumor suppressor. The present study aimed to investigate the mechanisms involved in IMA resistance in CML patients and determine new targets that can be beneficial in choosing the effective treatment. Finally, the study suggests that the SCD-1 and BCL-2 genes may be mechanisms responsible for resistance.

11.
Mol Biol Rep ; 50(2): 1565-1573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36515823

RESUMO

BACKGROUND: Multiple myeloma (MM), characterized by extensive genomic instability and aberrant DNA damage repair, is a plasma cell malignancy due to the excessive proliferation of monoclonal antibody-producing plasma cells in the bone marrow. Despite the significant improvement in the survival of patients with the development of novel therapeutic agents, MM remains an incurable disease. Werner (WRN) helicase, a member of the RecQ helicase family that contributes to DNA replication, recombination, and repair, has been highlighted in cancer cell survival, yet the role and mechanism of WRN in MM remain unclear. METHODS AND RESULTS: Increased mRNA expression of WRN in newly diagnosed and relapsed CD138+ myeloma plasma cells than normal CD138+ plasma cells and their matched CD138- non-tumorigenic cells were detected by qPCR. Using NSC19630, a specific WRN helicase inhibitor, we further showed decreased cell viability, proliferation, and DNA repair and increased DNA damage and apoptosis in MM cells by MTT assay, cell cycle assay, apoptosis assay, and Western blotting. CONCLUSIONS: The results of the present study demonstrate that WRN is essential in MM cell viability, proliferation, and genomic stability, indicating its inhibition may enhance the efficacy of chemotherapy in MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Exodesoxirribonucleases/genética , Reparo do DNA/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Replicação do DNA , Dano ao DNA/genética , Proliferação de Células/genética
12.
Turk J Pharm Sci ; 19(6): 714-723, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544402

RESUMO

Lepidium sativum L. is a common herb distributed worldwide, used as a food ingredient and therapeutic agent in traditional medicine for treating health-related disorders. L. sativum and its extracts have been described to possess numerous biological activities including antimicrobial, antidiabetic, antioxidant, antidiarrheal, anticancer, and numerous health-promoting effects in in vivo and in vitro studies. The purpose of this review is to summarize the findings describing important biological functions and therapeutic effects of L. sativum in various cell lines and animal models. In this review, the English-language articles were gathered from electronic databases including Web of Science, PubMed and Google Scholar with no time limit applied to any database. The search terms used in this review include, "Lepidium sativum L." and/or "chemical composition", "health benefits", "antimicrobial", "antioxidant", "anticancer", "diuretic", "nephro-protection", "antidiarrheal", "antidiabetic", "anti-asthmatic", "neuroprotection", "metabolic", "bone fracture", and "reproductive performance". Additional and eligible studies were collected from reference lists of appropriate articles. The information presented will be helpful to attract more interest toward medicinal plants by defining and developing novel clinical applications and new drug formulations in the future. Pre-clinical studies showed that L. sativum possesses potent health-promoting effects involving various molecular mechanisms. Taken all together, data suggested that identified herbal plants such as L. sativum, can be exploited as nutritional and therapeutic agents to combat various ailments. Despite much research in this field, further comprehensive in vitro/in vivo studies and clinical trials are needed to identify the mechanisms underlying the biological and therapeutic activities of L. sativum.

13.
Nanotechnology ; 33(26)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35325883

RESUMO

Accurate diagnosis of cancer cells in early stages plays an important role in reliable therapeutic strategies. In this study, we aimed to develop fluorescence-conjugated polymer carrying nanocapsules (NCs) which is highly selective for myeloma cancer cells. To gain specific targeting properties, NCs, XT5 molecules (a benzamide derivative) which shows high affinity properties against protease-activated receptor-1 (PAR1), that overexpressed in myeloma cancer cells, was used. For this purpose, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000]-carboxylic acid (DSPE-PEG2000-COOH) molecules, as a main encapsulation material, was conjugated to XT5 molecules due to esterification reaction using N,N'-dicyclohexylcarbodiimide as a coupling agent. The synthesized DSPE-PEG2000-COO-XT5 was characterized by using FT-IR and1H NMR spectroscopies and results indicated that XT5 molecules were successfully conjugated to DSPE-PEG2000-COOH. Poly(fluorene-alt-benzothiadiazole) (PFBT) conjugated polymer (CP) was encapsulated with DSPE-PEG2000-COO-XT5 due to dissolving in tetrahydrofuran and ultra-sonication in an aqueous solution, respectively. The morphological properties, UV-vis absorbance, and emission properties of obtainedCPencapsulatedDSPE-PEG2000-COO-XT5(CPDP-XT5) NCs was determined by utilizing scanning electron microscopy, UV-vis spectroscopy, and fluorescent spectroscopy, respectively. Cytotoxicity properties of CPDP-XT5 was evaluated by performing MTT assay on RPMI 8226 myeloma cell lines. Cell viability results confirmed that XT5 molecules were successfully conjugated to DSPE-PEG2000-COOH. Specific targeting properties of CPDP-XT5 NCs and XT5-free NCs (CPDP NCs) were investigated on RPMI 8226 myeloma cell lines by utilizing fluorescent microscopy and results indicated that CPDP-XT5 NCs shows significantly high affinity in comparison to CPDP NCs against the cells. Homology modeling and molecular docking properties of XT5 molecules were evaluated and simulation results confirmed our results.


Assuntos
Mieloma Múltiplo , Nanocápsulas , Cápsulas , Humanos , Micelas , Simulação de Acoplamento Molecular , Mieloma Múltiplo/tratamento farmacológico , Polietilenoglicóis/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Leuk Res ; 102: 106523, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33607534

RESUMO

INTRODUCTION: Chronic Myeloid Leukemia (CML) is a hematological disease which is characterized by the presence of BCR-ABL fusion protein. Imatinib (IMA), a tyrosine kinase inhibitor of BCR-ABL, is used as a frontline treatment.Although IMA aids in killing a majority of leukemia cells, it may not kill CML stem cells which are the primary roots of disease and therapy resistance. Recently, antimicrobial drugs have been gaining attention because of their selective targeting of cancer cells. Therefore, we now ask if combinational therapy of IMA with a targeted antimicrobial drug Azithromycin (AZT) can enhance the treatment efficiency in IMA resistant CML. METHODS: K562S (IMA sensitive) and K562R (IMA resistant) cells were treated with increasing concentrations of AZT to determine its effects on cell proliferation and apoptosis. Cell viability, apoptosis, caspase3/7 activity and P-glycoprotein (Pgp) function were investigated with spectrophotometric MTT assay and flow cytometric Annexin V staining, caspase 3/7 activity, and Rhodamine123 staining assays respectively. The expression levels of pro-apoptotic (BAX, BAD and BIM), anti- apoptotic (BCL-XL and BCL-2) and drug transporter (MDR-1 and MRP-1) genes were assessed with qRT-PCR. RESULTS: AZT treatment alone inhibited cell viability, induced apoptosis and enhanced caspase 3/7 activity in both K562S and high MDR-1 (Pgp) expressing K562R cells. Moreover, combination of AZT/IMA suppressed cell viability, induced apoptosis and caspase3/7 activity more effectively and significantly compared to K562R cells treated with only IMA or AZT. Furthermore, AZT and AZT/IMA combination decreased Pgp function in K562R cells in comparison with their controls. Based on qRT-PCR data, single AZT and combined AZT/IMA treatment also induced BAX/BCL-2 ratio significantly in both K562S and K562R cells. CONCLUSION: Single AZT and AZT/IMA combinational treatment can be proposed as a promising and effective treatment strategy for CML. One of the mechanisms underlying the potent anticancer effect of combined AZT/IMA could be its ability to inhibit Pgp function and increase intracellular accumulation of IMA which leads to the induction of apoptosis in K562R cells.


Assuntos
Antineoplásicos/farmacologia , Azitromicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mesilato de Imatinib/farmacologia
15.
Mol Biol Rep ; 48(2): 1625-1631, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33515349

RESUMO

Chronic Myeloid Leukemia (CML) is a clonal hematopoietic malignancy characterized by the formation of BCR-ABL fusion protein. Imatinib (IMA) is a BCR-ABL tyrosine kinase inhibitor (TKI), which exhibited a high rate of response for newly diagnosed CML patients. Emergence of IMA resistance considered as a major challenge in CML therapy. Recent studies reported the anti-cancer effect of natural extracts such as 6-Shogaol (6-SG) which is extracted from ginger and the mechanisms involved in targeting of cancer cells. In the present study, we aimed to explore the potential anticancer effect of 6-SG on K562S (Imatinib sensitive) and K562R (Imatinib resistant) cells. K562S and K562R cells were incubated with increasing concentrations of 6-SG (5 µM- 50 µM) to determine its cytotoxic and apoptotic effects. Cell viability and apoptosis were investigated with spectrophotometric MTT assay and flow cytometric Annexin V staining, respectively. The mRNA expression levels of apoptotic related genes (BAX and BCL-2) and drug transporter (MDR-1 and MRP-1) genes were evaluated with qRT-PCR. According to our results, 6-SG treatment inhibited cell viability, induced apoptosis in both K562S and K562R cells. Based on our RT-PCR results, 6-SG enhanced pro-apoptotic BAX gene and decreased anti-apoptotic BCL-2 gene expression levels significantly in both treated K562S and K562R cells. Furthermore, 6-SG increased MDR-1 mRNA expression level in K562S and K562R cells in comparison with their control counterparts. Whereas, 6-SG decrease MRP-1 mRNA expression level in K562S cells significantly. It is the first study that reveals the apoptotic effect of 6-SG in CML cell line and IMA resistance. Therefore, 6-SG treatment can be suggested as a promising strategy for CML therapy.


Assuntos
Catecóis/farmacologia , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteína X Associada a bcl-2/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética
16.
Biotechniques ; 69(6): 436-442, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103926

RESUMO

The aim of this study was to assess two protocols for their capacities to simultaneously isolate RNA, mtDNA and ncDNA from mammalian cells. We compared the Invitrogen TRIzol-based method and Qiagen DNeasy columns, using the HepG2 cell line and human primary glioblastoma stem cells. Both methods allowed the isolation of all three types of nucleic acids and provided similar yields in mtDNA. However, the yield in ncDNA was more than tenfold higher on columns, as observed for both cell types. Conversely, the TRIzol method proved more reproducible and was the method of choice for isolating RNA from glioblastoma cells, as demonstrated for the housekeeping genes RPLP0 and RPS9.


Assuntos
Bioquímica/métodos , Núcleo Celular/metabolismo , DNA Mitocondrial/isolamento & purificação , Mamíferos/metabolismo , RNA/isolamento & purificação , Animais , Glioblastoma/metabolismo , Glioblastoma/patologia , Células Hep G2 , Humanos , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/isolamento & purificação , Kit de Reagentes para Diagnóstico
17.
Life Sci ; 233: 116680, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31344431

RESUMO

Cancer is a globally challenging health problem threatening mankind. Despite therapeutic advances in dealing with this malignancy, heterogeneous response and resistance to chemotherapeutic agents remain the hallmarks of cancer therapy. On the other hand, the involvement of the microbiota in affecting human health is well defined. An ever-growing body of evidence implicates the potential link between the microbiome and the efficacy of cancer therapies. Gut microbiota can modulate the metabolism of drugs in a number of ways. The presence of bacteria within the tumor environment can also impact the responses to cancer therapies; changing the chemical structure of chemotherapeutic drugs, affecting their activity, and local concentration. However, the underlying mechanisms by which gut and tumor microbial communities affect the response to cancer therapy are poorly understood and deciphering these mechanisms is of paramount importance. This review provides an overview of how gut and tumor microbiota might affect the efficacy of chemotherapy, radiotherapy, and immunotherapy and alleviate the adverse side effects of these therapies for the development of personalized and effective anticancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Microbioma Gastrointestinal , Imunoterapia , Neoplasias/microbiologia , Neoplasias/terapia , Radioterapia , Humanos , Neoplasias/imunologia , Resultado do Tratamento
18.
Eur J Obstet Gynecol Reprod Biol ; 233: 26-29, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30550979

RESUMO

OBJECTIVE: Genetic contribution is thought to be involved in the pathophysiology of pelvic organ prolapse (POP). We aimed to study the gene expression profiles of the genes HomeoboxA11 (HOXA11), HomeoboxA13 (HOXA13), Collagen Type I (COL1A), Collagen Type III (COL3A), estrogen receptor genes (ESR1 and ESR2) of round (RL) and uterosacral ligaments (USL) in postmenopausal women with uterine prolapse. STUDY DESIGN: Gene expressions of 32 postmenopausal women with prolapse were analysed according to gene expressions of 8 postmenopausal women without prolapse. Quantitative real-time PCR (qRT-PCR) method was used for the detection of expression levels of the genes. Student's t-Test and Mann-Whitney U test were used for statistical analysis. RESULTS: In the USL specimens of all women with uterine prolapse HOXA13 and ESR1 gene expressions were decreased compared to controls (0.5 fold, p = 0.04 and 0.82 fold, p = 0.04, respectively). In the RL specimens, ESR2 gene expression was decreased 0.7 fold in women with prolapse when compared to controls (p = 0.04). In the USL specimens of women with advanced stages of prolapse (stage ≥3), HOXA13 and COL3A gene expressions were decreased compared to controls (0.44 fold, p = 0.043 and 0.39 fold, p = 0.045, respectively). In the RL specimens, ESR2 gene expression was decreased 0.65 fold in women with prolapse when compared to controls (p = 0.052). CONCLUSION: The significant decrease in the expression of the genes HOXA13, COL3A in the USL and ESR2 in the RL especially in advanced stages of prolapse, implicate that these gene expressions may play a role in the development of uterine prolapse.


Assuntos
Colágeno Tipo III/metabolismo , Receptor beta de Estrogênio/metabolismo , Proteínas de Homeodomínio/metabolismo , Prolapso Uterino/genética , Estudos de Casos e Controles , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Progressão da Doença , Receptor alfa de Estrogênio/metabolismo , Feminino , Expressão Gênica , Humanos , Ligamentos/metabolismo , Pós-Menopausa , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Prolapso Uterino/classificação
19.
Hematology ; 23(10): 765-770, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29945498

RESUMO

OBJECTIVE: Chronic myleoid leukemia (CML) is a myeloproliferative disorder characterized with the constitutive activation of Bcr-Abl tyrosine kinase which is a target for imatinib, the first line treatment option for CML. Constitutive activation of NFκB and ß-catenin signaling promotes cellular proliferation and survival and resistance to Imatinib therapy in CML. Akirin-2 is a nuclear protein which is required for NFκB dependent gene expression as a cofactor and has been linked to Wnt/beta-catenin pathway. The purpose of this study is to examine Akirin-2, NFκB and ß-catenin in imatinib resistance of CML and to test if any direct physical protein-protein interaction exists between NFkB and both ß-catenin and Akirin-2. METHODS: RT-PCR and western blot were performed to determine Akirin-2, NFκB-p65 and ß-catenin gene and protein expressions, Co-immunoprecipitation and chromatin immunoprecipitation analysis were carried out to detect the direct physical interactions and binding of NFκB-p65 and ß-catenin proteins to MDR1 promoter region, respectively. RESULTS: ß-catenin and NFκB-p65 proteins bound to DNA promoter regions of MDR1 in imatinib-sensitive and resistant CML cells, whereas any direct protein-protein interaction could not be found between NFκB-p65 and Akirin-2 or ß-catenin proteins. Nuclear ß-catenin and NFκB-p65 levels increased in imatinib resistance. Moreover, increased Akirin-2 protein accumulation in the nucleus was shown for the first time in imatinib resistant CML cells. DISCUSSION: We show for the first time that Akirin-2 can be a novel biomarker in imatinib resistance. Targeting Akirin-2, NFκB and ß-catenin genes may provide an opportunity to overcome imatinib resistance in CML.


Assuntos
Biomarcadores Tumorais , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas de Neoplasias , Fator de Transcrição RelA , Fatores de Transcrição , beta Catenina , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Fator de Transcrição RelA/biossíntese , Fator de Transcrição RelA/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , beta Catenina/biossíntese , beta Catenina/genética
20.
Cell Mol Biol (Noisy-le-grand) ; 64(6): 23-30, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29808796

RESUMO

Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the t(9; 22) and the related oncogene, BCR-ABL. Tyrosine kinase activity of fusion protein BCR-ABL is the main cause of CML. Even if imatinib is used as a tyrosine kinase inhibitor (TKI) for CML therapy, drug resistance may occur in patients and the clinical failure of imatinib treatment in resistant patients had resulted with the use of another alternative TKIs. BCR-ABL dependent and independent molecular mechanisms have crucial roles in drug resistance. To reveal the underlying molecular mechanisms which play significant roles in imatinib resistance in CML, we established K562 imatinib-resistant cell line (K562r5) which was continuously exposed to (5µM) imatinib to investigate molecular mechanisms which play significant roles in drug resistance. First of all, we analyzed T315I, M351T, F315L and F359C/L/V mutations with DNA sequencing as a BCR-ABL dependent mechanism in our cell lines. Moreover, we investigated BCR-ABL independent mechanisms such as apoptosis, autophagy, drug transport and DNA repair which affect drug resistance in these cell lines. In vitro cell viability was determined by MTT assay. DNA sequencing analysis was performed to detect BCR-ABL mutations. The apoptotic effect of imatinib on CML cell lines was tested by flow cytometric Annexin V-PE staining and caspase activation assays. Apoptotic, autophagic, drug transporter and DNA repair genes expression levels were determined by RT-PCR. The conventional cytogenetic analysis was performed on K562s and K562r cells. Our results indicate that inhibition of apoptosis, induction of autophagy, overexpression of efflux gene MDR1 and down-regulation of influx gene OCT1 play crucial roles in the progression of imatinib resistance.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Mesilato de Imatinib/farmacologia , Células K562/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Caspases/metabolismo , Análise Mutacional de DNA , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...